Beneficial Effects of Coculturing Synovial Derived Mesenchymal Stem Cells with Meniscus Fibrochondrocytes Are Mediated by Fibroblast Growth Factor 1: Increased Proliferation and Collagen Synthesis
نویسندگان
چکیده
Meniscus reconstruction is in great need for orthopedic surgeons. Meniscal fibrochondrocytes transplantation was proposed to regenerate functional meniscus, with limited donor supply. We hypothesized that coculture of synovial mesenchymal stem cells (SSC) with meniscal fibrochondrocytes (me-CH) can support matrix production of me-CH, thus reducing the number of me-CH needed for meniscus reconstruction. A pellet coculture system of human SSC and me-CH was used in this study. Enhanced glycosaminoglycans (GAG) in coculture pellets were demonstrated by Alcian blue staining and GAG quantification, when compared to monoculture. More collagen synthesis was shown in coculture pellets by hydroxyproline assay. Increased proliferation of me-CH was observed in coculture. Data from BrdU staining and ELISA demonstrated that conditioned medium of SSCs enhanced the proliferation and collagen synthesis of me-CH, and this effect was blocked by neutralizing antibody against fibroblast growth factor 1 (FGF1). Western blot showed that conditioned medium of SSCs can activate mitogen-activated protein kinase (MAPK) signaling pathways by increasing the phosphorylation of mitogen-activated regulated protein kinase 1/2 (MEK) and extracellular-signal-regulated kinases 1/2 (ERK). Overall, this study provided evidence that synovial MSCs can support proliferation and collagen synthesis of fibrochondrocytes, by secreting FGF1. Coimplantation of SSC and me-CH could be a useful strategy for reconstructing meniscus.
منابع مشابه
Effect of Simulated Microgravity Conditions on Differentiation of Adipose Derived Stem Cells towards Fibroblasts Using Connective Tissue Growth Factor
Background: Mesenchymal stem cells (MSCs) are multipotent cells able to differentiating into a variety of mesenchymal tissues including osteoblasts, adipocytes and several other tissues. Objectives: Differentiation of MSCs into fibroblast cells in vitro is an attractive strategy to achieve fibroblast cell and use them for purposes such as regeneration medicine. The goal of this s...
متن کاملAssay of Tgf-β And B-Fgf on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells in Wound Healing in a Murine Model
Purpose: Effects of TGF-b and b-FGF on the Potential of Peripheral Blood-Borne Stem Cells and Bone Marrow-Derived Stem Cells In Wound Healing in a Murine Model.Materials and Methods: Peripheral blood mesenchymal stem cells (PBMSCs) and bone marrow stem cells (BMSCs) cultured in media with transforming growth factor-beta (TGF-b) and basic fibroblast growth factor (b-FGF). Stem cells labeled with...
متن کاملDevelopment of Simple Protocol for Generation of Functionally Active Hepatocyte-like Cells from Human Adipose Tissue-derived Stem Cells
Background and Aims: Human adipose tissue-derived stem cells (hASCs) are considered as an attractive source of regenerative stem cells, mainly because of their higher proliferation rate, more accessibility and hepatocyte like properties as compared to mesenchymal stem cells isolated from other tissues. Numerous studies have described the beneficial use of adipose tissue-derived stem cells for g...
متن کاملA New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملEffects of BIO on proliferation and chondrogenic differentiation of mouse marrow-derived mesenchymal stem cells
In vitro expansion of mesenchymal stem cell (MSCs) into large number is necessary for their application in cell-based treatment of articular cartilage defects. On the other hand, some studies have indicated that BIO (6-Bromoindirubin-3-Oxime) possesses mitogenic effects on cell culture. The objective of the present study was to examine the effect of BIO on in vitro expansion and chondrogenic di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2015 شماره
صفحات -
تاریخ انتشار 2015